Microorganisms

402: ALICYCLOBACILLUS MEDIUM

This recipe contains strain-specific modifications for Alicyclobacillus sp. DSM 2498 st

Final pH: * 4.5

Final volume: 1000 ml

Solution A	1000.00	ml
Solution B	1.00	ml
Solution C	500.00	ml

Sterilize separately. For liquid medium combine solution A (with 1000.0 ml distilled water) and solution B. For solid medium combine solution A (with 500 ml distilled water), solution B and solution C. For strains of A. cycloheptanicus add 5 g/l of yeast extract instead of 2 g/l.

* pH 4.5

Solution A		
$CaCl_2 \times 2 H_2O$	0.25	g
$MgSO_4 \times 7 H_2O$	0.50	g
$(NH_4)_2SO_4$	0.20	g
Yeast extract	2.00	g
Glucose	5.00	g
KH_2PO_4	3.00	g
Distilled water (for liquid medium)	1000.00	ml
Distilled water (for solid medium)	500.00	ml
Adjust pH to 4.0		
Solution B Trace element solution SL-6	1.00	ml
Solution C Agar	15.00	a
Distilled water	500.00	g ml
Distilled Water	300.00	1111
Trace element solution SL-6 (from medium	27)	
ZnSO ₄ x 7 H ₂ O	0.10	g
$MnCl_2 \times 4 H_2O$	0.03	g
H_3BO_3	0.30	g
CoCl ₂ x 6 H ₂ O	0.20	g

Microorganisms

402: ALICYCLOBACILLUS MEDIUM

0.01	g
0.02	g
0.03	g
1000.00	ml
	0.02 0.03